Article 2420

Title of the article

COMPARISON OF THE GENERAL LOGARITHMIC FORMS’ POWER OF STATISTICAL CRITERIA
OF THE HARMONIC MEAN USING THE HYPOTHESIS OF NORMAL DISTRIBUTION OF SMALL SAMPLE DATA 

Authors

Lukin Vitaliy Sergeevich, Junior researcher, Regional Training and Research Center of «Information security», Penza State University (40 Krasnaya, Penza, Russia), ibst@pnzgu.ru

Index UDK

004.056; 004.032.26

DOI

10.21685/2072-3059-2020-4-2

Abstract

Background. The purpose of the article is to compare the probabilities of type I errors for the statistical chi-square test and two new statistical tests with the harmonic mean in normal and logarithmic forms.
Materials and methods. It is proposed to use three statistical criteria when making a decision. It is proposed to solve the problem of different scales of three different criteria by replacing each criterion with an equivalent neuron with a binary quantifier. The quantizers are tuned to give equal probabilities of type I and II errors.
Conclusions. It is shown that the considered group of artificial neurons has significant prospects for practical application, since it has an extremely low correlation coupling.

Key words

artificial neurons, statistical criteria, testing the normality hypothesis, small samples.

Download PDF
References

1. R 50.1.037–2002. Rekomendatsii po standartizatsii. Prikladnaya statistika. Pravila proverki soglasiya opytnogo raspredeleniya s teoreticheskim. Chast' I. Kriterii tipa χ2.
Gosstandart Rossii [Recommendations for standardization. Applied statistics. Rules for checking the agreement of the experimental distribution with the theoretical one. Part 1/ Type χ2 criteria]. Moscow, 2001, 140 p. [In Russian]
2. Kobzar' A. I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov [Applied Mathematical Statistics. For engineers and scientists]. Moscow: Fizmatlit, 2006, 816 p. [In Russian]
3. Khaykin S. Neyronnye seti: polnyy kurs [Neural networks: complete course]. Moscow: Vil'yams, 2006, p. 1104. [In Russian]
4. Rassel S., Norvig P. Iskusstvennyy intellekt. Sovremennyy podkhod [Artificial Intelligence. Modern approach]. Moscow; Saint-Petersburg; Kiev, 2006, 1407 p. [In Russian]
5. Ivanov A. I. Iskusstvennye matematicheskie molekuly: povyshenie tochnosti statisticheskikh otsenok na malykh vyborkakh (programmy na yazyke MathCAD): preprint
[Artificial mathematical molecules: increasing the accuracy of statistical estimates on small samples (programs in the MathCAD language): preprint]. Penza: Izd-vo PGU,
2020, 36 p. [In Russian]
6. Ivanov A. I., Bannykh A. G., Serikova Yu. I. Nadezhnost' [Safety]. 2020, no. 20 (2), pp. 28–34. DOI 10.21683/1729-2646-2020-20-2-28-34. [In Russian]
7. Ivanov A. I., Bannykh A. G., Bezyaev A. V. Vestnik Permskogo universiteta. Seriya: Matematika. Mekhanika. Informatika [Bulletin of Perm University. Series: Mathematics. Mechanics. Informatics]. 2020, no. 1 (48), pp. 26–32. [In Russian]
8. Bezyaev A. V. Biometriko-neyrosetevaya autentifikatsiya: obnaruzhenie i ispravlenie oshibok v dlinnykh kodakh bez nakladnykh raskhodov na izbytochnost': preprint [Biometrical neural network authentication: detecting and correcting errors in long codes without the overhead of redundancy: preprint]. Penza: Izd-vo PGU, 2020, 40 p. [In Russian]
9. Ivanov A. I., Vyatchanin S. E., Malygina E. A., Lukin V. S. Trudy mezhdunarodnogo simpoziuma Nadezhnost' i kachestvo [Proceedings of the International Symposium
“Safety and quality”]. 2019, vol. 2, pp. 131–134. [In Russian]
10. Ivanov A. I., Bannykh A. G., Kupriyanov E. N., Lukin V. S., Perfilov K. A., Savinov K. N. Bezopasnost' informatsionnykh tekhnologiy: sb. nauch. st. po materialam I Vseross. nauch.-tekhn. konf. (g. Penza 24 aprelya 2019 g.) [Information technology security: proceedings of the 1st All-Russian scientific and engineering conference (Penza, April 24, 2019)]. Penza: Izd-vo PGU, 2019, pp. 156–164. [In Russian]
11. Ivanov A. I., Perfilov K. A., Lukin V. S. Informatsionno-upravlyayushchie telekommunikatsionnye sistemy, sredstva porazheniya i ikh tekhnicheskoe obespechenie: sb.
nauch. st. Vseross. nauch.-tekhn. konf. [Information and control telecommunication systems, weapons and their technical support: proceedings of the All-Russian scientific and engineering conference]. Penza: AO «NPP Rubin», 2019, pp. 50–63. [In Russian]
12. Volchikhin V. I., Ivanov A. I., Bezyaev A. V., Kupriyanov E. N. Inzhenernye tekhnologii i sistemy [Engineering technologies and systems]. 2019, vol. 29, no. 2, pp. 205– 217. DOI 10.15507/2658-4123.029/2019.02.205-217. [In Russian]
13. Ivanov A. I. Chislennaya otsenka pokazateley kvantovoy stseplennosti vykhodnykh kubit neyrosetevoy molekuly preobrazovatelya biometricheskikh dannykh: uchebnoe posobie [Numerical estimation of the parameters of quantum entanglement of the output qubits of the neural network molecule of the biometric data converter: a teaching aid]. Penza: Izd-vo AO «PNIEI», 2018, 27 p. Available at: http://pniei.pf/activity/science/ noc/BOOK18-2.pdf [In Russian]

 

Дата создания: 17.02.2021 12:09
Дата обновления: 17.02.2021 12:53